Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 105(6): 1658-1666, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27177842

RESUMO

In this study, polycaprolactone (PCL) film, a high potential material used in biomedical applications, was treated by air plasma prior to a conjugation by carbodiimide cross-linking with various types of proteins, including type A gelatin, type B gelatin, and collagen hydrolysate. The properties of modified PCL films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle measurement, and atomic force microscopy. The XPS results showed that oxygen and nitrogen atoms were successfully introduced on the air plasma-treated PCL surface. Primary amine was found on the air plasma-treated PCL films. All proteins were shown to be successfully cross-linked on air plasma-treated PCL films. The wettability and roughness of protein-conjugated PCL films were significantly increased compared to those of neat PCL film. In vitro biocompatibility test using L929 mouse fibroblast showed that the attachment percentage and spreading area of attached cells on all protein-conjugated PCL films were markedly increased. Comparing among modified PCL films, no significant difference on the attachment of L929 on modified PCL films was noticed. However, the spreading areas of cells after 24 hours of culture on type A gelatin- and type B gelatin-modified PCL surfaces were higher than that on collagen hydrolysate-modified surface, possibly related to the lower percentage of amide bond on collagen hydrolysate-conjugated surface compared to those on both gelatin-conjugated PCL ones. This indicated that the two-step modification of PCL film via air plasma and carbodiimide cross-linking with collagen-derived proteins could enhance the biocompatibility of PCL films. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1658-1666, 2017.


Assuntos
Carbodi-Imidas/química , Reagentes de Ligações Cruzadas/química , Fibroblastos/metabolismo , Teste de Materiais , Gases em Plasma/química , Poliésteres , Animais , Linhagem Celular , Fibroblastos/citologia , Camundongos , Poliésteres/química , Poliésteres/farmacologia
2.
Arch Biochem Biophys ; 605: 34-40, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27056469

RESUMO

A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater.


Assuntos
Ar , Oxigênio/química , Gases em Plasma/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Água/química , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Eletricidade , Óxido Nítrico/química , Borracha , Águas Residuárias
3.
PeerJ ; 3: e1471, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26734507

RESUMO

Background. Syngnathid fishes produce three kinds of sounds, named click, growl and purr. These sounds are generated by different mechanisms to give a consistent signal pattern or signature which is believed to play a role in intraspecific and interspecific communication. Commonly known sounds are produced when the fish feeds (click, purr) or is under duress (growl). While there are more acoustic studies on seahorses, pipefishes have not received much attention. Here we document the differences in feeding click signals between three species of pipefishes and relate them to cranial morphology and kinesis, or the sound-producing mechanism. Methods. The feeding clicks of two species of freshwater pipefishes, Doryichthys martensii and Doryichthys deokhathoides and one species of estuarine pipefish, Syngnathoides biaculeatus, were recorded by a hydrophone in acoustic dampened tanks. The acoustic signals were analysed using time-scale distribution (or scalogram) based on wavelet transform. A detailed time-varying analysis of the spectral contents of the localized acoustic signal was obtained by jointly interpreting the oscillogram, scalogram and power spectrum. The heads of both Doryichthys species were prepared for microtomographical scans which were analysed using a 3D imaging software. Additionally, the cranial bones of all three species were examined using a clearing and double-staining method for histological studies. Results. The sound characteristics of the feeding click of the pipefish is species-specific, appearing to be dependent on three bones: the supraoccipital, 1st postcranial plate and 2nd postcranial plate. The sounds are generated when the head of the Dorichthyes pipefishes flexes backward during the feeding strike, as the supraoccipital slides backwards, striking and pushing the 1st postcranial plate against (and striking) the 2nd postcranial plate. In the Syngnathoides pipefish, in the absence of the 1st postcranial plate, the supraoccipital rubs against the 2nd postcranial plate twice as it is pulled backward and released on the return. Cranial morphology and kinesis produce acoustic signals consistent with the bone strikes that produce sharp energy spikes (discrete or merged), or stridulations between bones that produce repeated or multimodal sinusoidal waveforms. Discussion. The variable structure of the sound-producing mechanism explains the unique acoustic signatures of the three species of pipefish. The differences in cranial bone morphology, cranial kinesis and acoustic signatures among pipefishes (and seahorses) could be attributed to independent evolution within the Syngnathidae, which warrants further investigation.

4.
Colloids Surf B Biointerfaces ; 111: 579-86, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23893032

RESUMO

Low energy plasma has been introduced to treat the surface of Thai silk fibroin which should be enhanced for cell adhesion due to its native hydrophobic surface. Plasma surface treatment could introduce desirable hydrophilic functionalities on the surface without using any chemicals. In this work, nitrogen glow discharge plasma was generated by a low energy AC50Hz power supply system. The plasma operating conditions were optimized to reach the highest nitrogen active species by using optical emission spectroscopy. X-ray photoelectron spectroscopy (XPS) revealed that amine, hydroxyl, ether, and carboxyl groups were induced on Thai silk fibroin surface after plasma treatment. The results on Fourier transform infrared attenuated total reflection (FTIR-ATR) spectroscopy confirmed that the plasma treated effects were only on the outermost layer since there was no change in the bulk chemistry. The surface topography was insignificantly changed from the detection with atomic force microscopy (AFM). The plasma-treated effects were the improved surface wettability and cell adhesion. After a 90-s treatment, the water contact angle was at 20°, while the untreated surface was at 70°. The early cell adhesion of L929 mouse fibroblast was accelerated. L929 cells only took 3h to reach 100% cell adhesion on 90 s N2 plasma-treated surface, while there was less than 50% cell adhesion on the untreated Thai silk fibroin surface after 6h of culture. The cell adhesion results were in agreement with the cytoskeleton development. L929 F-actin was more evident on 90 s N2 plasma-treated surface than others. It could be concluded that a lower energy AC50Hz plasma system enhanced early L929 mouse fibroblast adhesion on Thai silk fibroin surface without any significant change in surface topography and bulk chemistry.


Assuntos
Fibroblastos/citologia , Fibroínas/farmacologia , Gases em Plasma/farmacologia , Actinas/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Fibroblastos/efeitos dos fármacos , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Tailândia , Termodinâmica , Água/química , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...